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Abstract

We consider the problem of dimensionality reduction and ifo&th learning when the domain of interest
is a set of probability distributions instead of a set of Eiledn data vectors. In this problem, one seeks to
discover a low dimensional representation, called an entibgdthat preserves certain properties such as distance
between measured distributions or separation betweesedad distributions. Such representations are useful for
data visualization and clustering. While a standard Eeeliddimension reduction method like PCA, ISOMAP, or
Laplacian Eigenmaps can easily be applied to distributidaéa — e.g. by quantization and vectorization of the
distributions — this may not provide the best low-dimenal@mbedding. This is because the most natural measure
of dissimilarity between probability distributions is theformation divergence and not the standard Euclidean
distance. If the information divergence is adopted then ghace of probability distributions becomes a non-
Euclidean space called an information geometry. This larficesents methods that are speci cally designed for
the low-dimensional embedding of information-geometatag and we illustrate these methods for visualization in

ow cytometry and demography analysis.

Index Terms

Information geometry, dimensionality reduction, stétit manifold, classi cation

. INTRODUCTION

High dimensional data visualization and interpretationenbecome increasingly important for data
mining, information retrieval, and information discrinaithon applications arising in areas such as search
engines, security, and biomedicine. The explosion in sgnand storage capabilities has generated a vast
amount of high dimensional data and led to the developmemafy algorithms for feature extraction

and visualization, known variously as dimensionality retecan, manifold learning, and factor analysis.



Dimensionality reduction strategies fall in two categsrisupervised task-driven approaches and unsu-
pervised geometry-driven approaches. Supervised taggrdapproaches reduce data dimension according
to optimize a performance criterion that depends on bothreédeiced data and ground truth, e.g., class
labels. Examples include linear discriminant analysisAlL[L], supervised principal components [2], and
multi-instance dimensionality reduction [3]. Unsupeedsyeometry-driven approaches perform dimension
reduction without ground truth and try to preserve georogtroperties such as distances or angles between
data points. Examples include principal components aga({&CA) and multidimensional scaling (MDS)
[4], and ISOMAP [5]. Most of these approaches use Euclidaatanices between sample points to drive
the dimensionality reduction algorithm.

Recently it has been recognized that these Euclidean #igwican be generalized to non-Euclidean
spaces by replacing the Euclidean distance metric with @&meneral dissimilarity measure. In particular,
when the data samples are probability distributions, usanoinformation divergence such as Kullback-
Leibler (KL) instead of Euclidean distance leads to a claksnformation geometric algorithms for
dimensionality reduction [6], [7]. In this article we modite and explain the application of information-
geometric dimensionality reduction for two real-world &pgtions.

Information-geometric dimensionality reduction (IGDR)evates on a statistical manifold of probability
distributions instead of the geometric manifold of Euclidedata points. When such distributional infor-
mation can be extracted from the data, IGDR results in sgant improvements in information retrieval,
visualization, and classi cation performance [6]-[10hi$ improvement can be understood from the point
of view of information-theoretic bounds: information digence is generally more relevant to statistical
discrimination performance than Euclidean distance.

For example, for binary classi cation the minimum probélilof error converges to zero at an ex-
ponential rate with rate constant equal to the the Kullblae#ler information divergence between the
distributions of the data over each class [11]. The KL dieage not a function of the Euclidean distances
between data points unless these distributions are sph&aussian. Therefore, as it preserves information
divergence, in many cases IGDR can produce more informatireension reductions than classical
Euclidean approaches.

Implementation of information-geometric versions of PCBOMAP and others is often not as straight-
forward as the Euclidean counterparts, which are frequeothvex and solvable as generalized eigenvalue

problems. Nonetheless, as shown in this paper, the addeg@lexity of implementation can be well
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Fig. 1. Inclinical ow cytometry, diagnoses and prognoses made through the analysis of high-dimensional pointddahe measurement
space of selected bio-markers.

worth the effort. We illustrate the power of information geetric dimensionality reduction by presenting
generalizations of ISOMAP, PCA and LDA. These implemenptatiare called Fisher Information Nonpara-
metric Embedding (FINE) [6], Information Preserving Compats Analysis (IPCA) [9], and Information
Maximizing Components Analysis (IMCA) [12], respectivelach of these algorithms solves a well-posed
optimization problem over the information-geometric exhiiag of each sample point's distribution.
Probability distributions and information divergence canse as useful targets for dimensionality
reduction in several ways. In image retrieval applicatjoti® most discriminating properties of an
image may be invariants such as the relative frequency ofiroexce of different textures, colors, or
edge features. The histogram of these relative frequensi@sprobability distribution that is specic
to the particular image; up to scale, translation, rotatonother unimportant spatial transformations.
Dimensionality reduction on these probabilities can aareé retrieval speed without negatively affecting
precision or recall rates. Furthermore, visualization lvé tlatabase, e.g. as manifested by clusters of
similar images, can be useful for understanding databasgleaity or for comparing different databases.
In other applications, each object in the database is itdeted as a cloud of high dimensional points
and the shape of this point cloud is what naturally diffeises the objects. For example, in the ow
cytometry application, discussed in Section V of this papee objects are different patients, the data
points are vector attributes of a population of the patgebibod cells, and it is the shape of the point cloud
that is of interest to the pathologist. This is demonstratelig. 1, where we compare the point clouds,
with respect to 3 bio-markers, of two patients with favoeadhd unfavorable prognoses. Another example,

discussed in Section VI, is spatio-demographic analysisriofie data where the analyst is interested in



comparing patterns of crime in different cities based otritistions of community and law enforcement
characteristics.
All the algorithms presented here are available for dowshlaa MATLAB code on our reproducible

research website [13].

[I. DISTANCE ON STATISTICAL MANIFOLDS

Information geometry is a eld that has emerged from the gtofigeometrical constructs on manifolds
of probability distributions. These investigations azayrobability distributions as geometrical structures
in a Riemannian space. Using tools and methods deriving étifflerential geometry, information geometry
is applicable to information theory, probability theorpdastatistics

As most dimensionality reduction techniques are desigaegither preserve pairwise sample distances
(unsupervised) or maximize between-class distances rfg@apd), it is rst necessary to understand the
principles of distance in information geometry. Similargoints on a Riemannian manifold in Euclidean
space, PDFs which share a parametrization lie atasistical manifold. A statistical manifold may be
viewed as a sel whose elements are probability distributions. The coatdirsystem of this manifold
is equivalent to the parametrization of the PDFs. For examgd-variate Gaussian distribution is entirely
de ned by its mean vector and covariance matrix, leading to ad+ d(d+ 1) =2-dimensional statistical
manifold which is of a higher dimension than the dimenstbof a sample realizatiocX N (; )
from this distribution.

For a parametric family of probability distributions on atsstical manifold, it is possible to de ne
a Riemannian metric using the Fisher information metricjcwhmeasures the amount of information
a random variable contains in reference to an unknown pdexmeThis metric may then be used to
compute the Fisher information distanBe: (p;; p.) between two distributiong(x; 1);p(x; 2) 2 M .
This distance is the length of the shortest path — the geodesnM connecting coordinates and .

While the Fisher information distance cannot be exactly poted without a priori knowledge about
the parametrization of the manifold, the distance between PO#;sand p, may be approximated with
a variety of pseudo-metrics such as the Kullback-Leibler)(Kivergence,

P1(x)
P2(x)

IFor a more thorough introduction to information geometrg, suggest [14], [15]

dx: 1)

KL (pLkp2) = p1(x) log



Fig. 2. Given a 1-dimensional submanifold (the curvy danle)iof interest lying on a 2-dimensional sphere manifold,Eisher information
distance is the shortest path connecting the points A anadByahe 1-D submanifold, rather than the length of a portibthe great circle
connecting the points on the sphere.

The KL-divergence is very important in information theoayd is commonly referred to as the relative
entropy of one PDF to another. As a pair of densities appreach other, the Kullback-Leibler divergence

is a good approximation to the Fisher information distanesvien therh[14]:

p -
2KL (pikp2) ! De(p1;p2)

aspy ! p.. This allows for a data-driven approximation of the Fisheioimation distance, through
the use of the empirically determined PDFs in the absencenfofmation about the Fisher informa-
tion metric. While the KL-divergence is not a symmetric meas we can add symmetry by de ning,
Dke (p1;p2) = KL (prkp) + KL (p2 kp1), which maintains similar convergence properties. We note
that there are several other metrics which approximate thleeF information distance — such as the
Hellinger and cosine distances — although for brevity wézetithe KL-divergence throughout this paper.
For additional measures of probabilistic distance andildeda their computation for empirical data, we
refer the reader to [16], [17].

As the two densitiep; andp, in (1) become more dissimilar, the KL-divergence approxioraof the
Fisher information distance becomes weak. AdditionallypwPDFs are constrained to form a submanifold
of interest, the “straight shot” distance is no longer aruagi® description of the manifold distance. This
is illustrated in Fig. 2 in which we represent a 1-dimensiawgbmanifold which occupies a subspace
of the 2-dimensional hyper-sphere. The Fisher informati®mtance is equal to the shortest path along
the submanifold (curvy line), and is not equal to the distann the full manifold, i.e. the portion of a

2More precisely,2KL (pikpz) = D2 (p1;p2)(1 + O(kp:  p2k) wherekp:  p-k denotes thd., norm of the difference between the
densities.
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Fig. 3. Convergence of the graph approximation of the Figtifermation distance using the Kullback-Leibler divergenAs the manifold
is more densely sampled, the KL divergence approaches #efFinformation distance.
great circle on a hyper-sphere connecting the two pointsicelethere are situations in which standard
approximations of the information distance do not convdmy¢he true distance, and it is necessary to
approximate the geodesic along the manifold.
Using a connected graph, we may de ne the path betwreandp, as a series of connected segments.

The geodesic distance may then be approximated as the suma leingths of those segments. Speci cally,

Fisher information distance, we can now de ne an approxiomafunction G for all pairs of PDFs:

K 1
G(p1; p2; P) = rp/llrg Die (Pay; P+ ) Py ! Pe+ny 81 (2)

i=1
Intuitively, this estimate calculates the length of the rébst path between points in a connected graph
on the well sampled manifold, and as su@fp;; p2;P) ! De(p1;p2) asN !'1 . Empirically, (2) may

be solved with Dijkstra's shortest path algorithm. This isiitar to the manner in which ISOMAP [5]
approximates distances on Euclidean manifolds. Figuréu8tihtes this approximation by comparing the
KL graph approximation to the actual Fisher informationtaige for the univariate Gaussian case. As the
manifold is more densely sampled (uniformly sampling over tange of mean and variance parameters

for this simulation), the approximation converges to thestFisher information distance.

IIl. DIMENSIONALITY REDUCTION IN THE DENSITY SPACE

dimensionality reduction in the space of probability déasi one wishes to reconstrudt using only the

information available inP. Speci cally, the aim is to nd an embedding : p(x) ! vy, wherey 2 R™.



Fig. 4. FINE: rst, a probability density function (PDR) is estimated for each dataset. Then, an information-geometric metric is used
to learn the geometry of the manifold of PDFs from pairwisstatice measurements. Finally, a Euclidean embedding fnermianifold
M x to RY is obtained associating each original dataéetwith its embedded point in Euclidean space

This is a similar setting to traditional manifold learninigg@ithms which aim to reconstruct Riemannian
manifolds based on a nite sampling, extended to the progeif statistical manifolds.

By performing dimensionality reduction on a family of PDRse are better able to both visualize
and classify the data. In order to obtain a lower dimensienabedding, we calculate the pairwise KL-

divergences withirP. In problems of practical interest, however, the paraniton of the probability

we may assume that each dataXetis a realization of some underlying probability distritmstito which
we do not have knowledge of the parameters. As such, we relyoaparametric techniques to estimate
both the probability density and the KL-divergence. For ploeposes of this paper, we implement kernel
density estimation methods, although other estimatiorhotst are also applicable.

In previous work [6] we developed an algorithm for dimensility reduction in the density space,
which we called Fisher Information Nonparametric EmbeddiRINE). By assuming each data set is a
realization of an underlying PDF, and each of those distidims lie on a manifold with some natural
parametrization, then this embedding can be viewed as aedulitig of the actual manifold into Euclidean
space. We illustrate the FINE algorithm in Fig. 4.

Through information geometry, FINE enables the joint enaiegl of multiple data setX ; into a
single low-dimensional Euclidean space. By viewing eXch2 X as a realization of; 2 P, we reduce
the numerous samples X ; to a single point. The dimensionality of the statistical mf@d may be

signi cantly less than that of the Euclidean realizatioMDS methods reduce the dimensionality mf



from the Euclidean dimension to the dimension of the staiktmanifold on which it lies.

A. Adding Application-speci ¢ Constraints

FINE was developed to be applied to the general case of diovagy reduction in the space of
PDFs, making no assumptions on the data distributions ogeleenetry of the underlying statistical man-
ifolds. However, there are several applications where knowrinsic properties which may be exploited
when performing information geometric dimensionality wetlon. By incorporating these properties into
algorithm constraints, one may be able to obtain improvetbpeance.

Lee et al. [18] have demonstrated the use of IGDR for image segmentatising multinomial dis-
tributions as points which lie on an-simplex (or projected onto a(n + 1)-dimensional sphere). By
framing their problem as such, they are able to exploit theperties of such a manifold — using the
cosine distance as an exact computation of the Fisher imfioom distance, and using linear methods
(PCA) of dimensionality reduction. They have shown verympising results for the problem of image
segmentation.

If there existsa priori knowledge that the geometry of the underlying manifold & tf a (hyper)sphere,
adding such a constraint results in an improved embeddm{g]] we presented a special case of FINE
which we called Spherical Laplacian Information Maps (S)IMnhich restricted the nal embedding to
constrain all points to lie on the surface of a sphere. SLIMssful when the user wants to preserve the
spherical geometry of the ambient space, as arises for dganien dimensionality reduction is used to
extract object pose trajectories from video. This is itastd in Fig. 5, where we embed the rotation of
an object captured by a stationary camera with SLIM and PC#&chEof 36 images was featured as a
multinomial distribution over the pixel space prior to erddang. While PCA discerns the order of the

change in angle, it does not properly identify the shape eftthjectory (i.e. circular) as SLIM does.

V. DIMENSIONALITY REDUCTION IN THE SAMPLE SPACE

For many learning methods, it is often desirable to redueedilmensionality ofX , nding a trans-
formationA : X ! 'Y whereY =[yi;:::;yn] and eachy; 2 R™; m < d. Typically, each set would be
reduced in an individual manner; if there is deemed a ralatigp between the sets, it has generally been
approached as a classi cation problem in which each sighalis considered a set of points belonging
to classi. An example of this situation would be supervised dimeraignreduction with Fisher's linear

discriminant analysis (LDA) [1].
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Fig. 5. The embedding of an object captured at various mtgtoints with SLIM and PCA. SLIM preserves the sphericauratof the
intrinsic manifold.

Viewing this problem from an information-geometric persipee presents a different vantage point;
rather than considering eack; to be a collection of points in a specic class, let us gerizeathe
relationship between se¥; andX ;. Speci cally, consider the case for which eaxh is a realization
of some unknown generating functign in which p; andp; may or may not be equivalent. This agrees
with the standard classi cation problem, in which eaghrepresents a class PDF, but it also allows
for different relationships between PDFs. Speci callyther than having a number classes equal to the
number of data setll, there may be signi cantly fewer classé N, in which M is unknown and
no labels are available. In this generalized scenario, asmo@ality reduction dimensionality reduction is
desirable for the purposes of classi cation, feature estiom, and/or visualization.

Let us illustrate with a simple example. Every 10 years, a &¥&as is performed generating a collection
of data about each of its residents such as height, weigtime, ethnicity, education level, etc.. Let us
now partition the data such that each county within the sdaate & represented by its own 3ét Standard
methods of feature extraction will nd the features whictsbdescribe each county on an individual level.
We are interested in determining the most important featwken comparing all counties at the same
time. While median income may not be a distinguishing charatic within a single county, and may
not be recognized as such when solely extracting featuoes fhat individual county, it would be quite

informative when comparing all counties across the state.
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The construct of comparison across data sets can be diguslyacted to the biomedical elds, where
it is necessary to compare patients who have been analyzbdiive same set of features, and identify
which of those features best distinguishes the patientusoy/e have presented a method of information
geometric dimensionality reduction — which we refer tol@®rmation Preserving Component Analysis
(IPCA) — to solve this problem for ow cytometry data [9]. IPCA aims hd the optimal transformation
of PDFsA : p(x) ! p(y). By preserving the KL-divergence the estimated PDFs gdéingréhe data sets,
IPCA ensures that the low-dimensional representation taiais the similarities between data sets which
are contained in the full-dimensional data, minimizing tbgs of information.

With some abuse of notation, we will further referx, (pi; ;) asDk (X i; X j), recalling that the
KL-divergence is calculated with respect to PDFs, not radilons. We de ne the IPCA projection matrix

A 2 R™ 9 in which A reduces the dimension &f fromdtom (m d), such that
Dki (AX i;AX ) = Dy (Xi:X5); 813 ©))
This can be formulated as an optimization problem:
A=arg min_J(A); (4)

wherel is the identity matrix and (A) is some cost function designed to implement (3). Note that we
include the optimization constraiédA™ = | to ensure our projection is orthonormal, which keeps tha dat
from scaling or skewing as that would undesirably distog tfata. LetD (X ) be a dissimilarity matrix

such thatDj (X) = Dk (X i;Xj), andD(X;A) is a similar matrix where the elements are perturbed

by A, i.e. Dj (X;A) = D (AX j; AX j). This formulation results in the following cost function:

J(A) = * W (D (X) Dy (X;A)?; (5)
P
whereW; is some weighting factor.
The weightsW;; can be selected based bx) (X) to de-emphasize the in uence of certain p&irg )
on the embedding. For example, nearest neighbor (NN) weighitV; =1 for somek-NN andW; =0
will eliminate far- ung interactions for which the KL-divgence is a poor approximation to the Fisher
metric. The use of heat kernel weights, similar to Lapladiagenmaps [19], will have a more gradual

effect. These functions will ensure that more weight is git@ preserve the pairwise distances of “close”

PDFs. While the choice of cost weighting function is deperd® the problem, the overall projection
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Compare Distances

Fig. 6. IPCA/IMCA: rst, a probability density function (PB) p; is estimated for each datasét. Simultaneously, a probability density
function (PDF)q is estimated for each datasét = AX . Then, an information-geometric metric is used to learndhemetry of the
manifold M x of PDFsp;s and manifoldM y from PDFsg s from pairwise distance measurements. Finally, an obgedsi calculated to
compare the geometry of the two manifol¥sx and M y. For IPCA, we consider the minimization of the sum of squadéterences
between each pairwise distance n, and its equivalent iM . For IMCA, we consider the maximization of the sum of dises\nM .

method ensures that the similarity between data sets ismadlyipreserved in the desired low-dimensional
space, allowing for comparative learning between sets.

We illustrate the IPCA and IMCA (see Section IV-A) in Fig. 6.hWé we omit the details in this paper
(see [9], [17]), the cost function (5) may be minimized withrious convex optimization techniques; we
utilize gradient descent with random initializations #r There are computational issues with gradient
methods, namely local extrema. We nd the global minimum leynputing IPCA over several random
initializations and taking the resultaAt which minimizes the cost function. In most applications vesdn
tested, this method has been very effective, and we havelfoworst random initializations ok converge
to the same minimum.

Recall that the information distance is entirely de ned Iwpde areas of input space in which PDFs
differ. As the IPCA preserves the information distance lestmvprobability distributions) is going to be
highly weighted towards the variables which contribute mtoghat distance. Hence, the loading vectors
of A give a ranking of the discriminative value of each variabilethe full-dimensional feature space.

This form of variable selection is useful in exploratory alainalysis.
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A. Supervised Learning

As mentioned previously, when developing ICPA we geneedlithe relationship between PDFs such
that they may or may not represent unique classes in a ctaggin task. We presented IPCA in the
scenario for which sample classi cation is not the desiradkt but we now extend the methods to
supervised dimensionality reduction.

The Chernoff performance bound on classi cation error igdugo bound the probability of error
based on the probabilistic distance between classes. Tken@fh distance is a single-parameter class
of probabilistic distances, and as the distance increabesprobability of misclassi cation decreases.
A special member of the class of Chernoff distances, knovhasBhattacharya distance between PDFs,
converges to the Fisher information distance, similarlthieoKL-divergence. It is natural, therefore, to nd
a form of dimensionality reduction which will maximize thefermation distance between class PDFs,
as that will enable control of the error probability.

This information geometric approach ts into the IPCA franmk. Consider the following theorem:

Theorem 1:Let RVs X; X 2 RY have PDFsfx andfyo, respectively. Using then d matrix A
satisfying AAT = |,,, construct RVsY;Y?2 R™ such thaty = AX andY®= AX° The following

relation holds:
Dk (fx;fxo) Dk (fy;fyo);

wherefy andfyo are the PDFs o¥; YC respectively.

The proof of this theorem may be found in [17] and states thatKL-divergence cannot be increased
through an orthonormal transform of the input space. Thimtgitive, as an orthonormal transform is
simply a rotation, which cannot increase distance. As soaximizing the information distance between
PDFs in a low-dimensional space is directly related to pxésg said distance, albeit with a different

formulation.

consists of all points 2 RY in classC;; estimating the PDF oK ; asp;(x). Our objective function for

the supervised scenario undergoes a slight modi cationettome:

X X
A =arg max W; D (X; A)% (6)
AAAT =] i J

We refer to this modi ed algorithm amformation Maximizing Component AnalygIMCA) [12] []. By
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Fig. 7. The point cloud method of analyzing ow cytometry das$ parallel to the analysis of the marginal densities ofdi distributions.

maximizing the information distance between class PDFsnhateonly ensure an optimal performance
bound on classi cation error, but we also preserve the @hinformation geometry between classes. This
fact is critical when class PDFs are not linearly separablg. (such is the assumption of standard LDA).
Note that the optimization of the IMCA cost function may bendan a similar fashion to that of IPCA.
In fact, for the 2-class problem, IPCA and IMCA are identidabr our purposes we use gradiesicent

as the objective is now a maximization, and the calculatiodé is quite similar. Note that we may still
use the IMCA projection matrix for variable selection, witie knowledge that the variables with the
highest weights are those which contain the most discritiv@aalue, which is critical for classi cation
tasks.

It is worth explicitly pointing out that IMCA is similar to LB. In fact, if the classes are Gaussian,
IMCA would result in an orthogonal version of LDA. Recall thaDA assumes Gaussian classes and
maximizes the between-class covariance while minimizirggwithin-class spread. This would maximize
the information distance between the classes. Hence, IM&¥be viewed as a generalized and orthogonal

version of LDA, which does not make assumptions on the cladsition.

V. FLow CYTOMETRY

In clinical ow cytometry, pathologists gather readings abrescent markers and light scatter off of
individual blood cells from a patient sample, leading to areleteristic multi-dimensional distribution
that, depending on the panel of markers selected, may biedisbr a speci c disease entity. Clinical
pathologists generally interpret results in the form of wmensional scatter plots in which the axes each

represent one of the many cell characteristics analyzednthlti-dimensional nature of ow cytometry



14

Marker Loading
Forward Light Scatter 0.1843
Side Light Scatter 0.1044

CD5 0.6270

CD38 0.8420

CD45 0.7228

CD19 0.5750
TABLE |

CLL ANALYSIS MARKERS THEIR CORRESPONDINGPCA LOADING WEIGHTS.

Fig. 8. Contour plots (i.e. PDFs) for 3 of the 6 analysis digiens for CLL prognosis. The data for these patients is tihensformed
by IPCA, yielding a simple and easily discernable 2-dimenai analysis space. The patients chosen are the most rsfimitarable and
unfavorable prognosis CLL patients.

is routinely underutilized in practice. Given the mannemihich analysis is performed on point clouds,
pathologists are actually performing a visual density gsia) as illustrated in Fig.7. Here we demonstrate
the similar marginal densities (with respect to 2 bio-mekef patients with differing prognosis. This
enables the utilization of IGDR methods to provide a singlalgsis space for pathologists.

We present a study of chronic lymphocytic leukemia (CLL)igras, using IPCA to nd a low-
dimensional space which preserves the differentiatiomvéent patients with good and poor prognoses

(i.e. favorable and unfavorable immunophenotypes). Usingpllection of 23 patients diagnosed with
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Fig. 9. Comparison of CLL patient embeddings, obtained WHKE, using (a) the full dimensional and (b) the IPCA projestmatrix. The
patients with a poor immunophenotype (CD38hi) are generadlll clustered against those with a favorable immunophgre (CD38l0) in
both embedddings.

Table I. We use IPCA to determine the optimal informatioegarving projection space, and illustrate this
projection in Fig. 8. This image shows the 3-dimensional sneament space of markers CD5, CD38,
and CD19; comparing two very similar patients with differiprognosis. It should be clear that IPCA
provides a projection space for which discerning prognsssmpli ed.

In Table | we also display the loading weights of each of thekes in the IPCA projection matrix.
This is done by taking the vector norm of each column in2he6 IPCA matrix. Note that CD38 has the
largest loading value; literature [20] has shown that pésievhose leukemic cells are strong expressers
of CD38 have signi cantly worse survival outcome. We alserntlfy the possibility that CD45 and CD19
expression are also areas which may help prognostic aghilliich is an area for further investigation.

Using FINE to embed the data (Fig. 9) for comparative viazion, we see that the different prognosis
groups are very similar, although decent clusters are fdrmieen labels are applied. These clusters are
not well separated, however, which further illustratesdieulties in forming an appropriate prognosis.
There are also issues of sample size, as a larger databaatesftp may lead to a more clear separation
of clusters. Nonetheless, IPCA and FINE were able to apfatgly identify the important markers for
assigning prognosis, and group patients accordingly wedpect to immunophenotype. For additional
details on this and other studies of FINE and IPCA with ow aytetry, we refer the reader to [9], [21]

3Courtesy of the Department of Pathology at the Universitpithigan
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VI. CRIME IN THE 90s

We next illustrate IDGR to the analysis of crime indicatoreni 1990 U.S. census data. This data
will be used to illustrate how information geometry can bediso discover which community and law
enforcement features may be indicative of the level of crgaeen in said community. We obtained the
data from the UCI Machine Learning Repository [22], whichdisscribed in an abbreviated fashion as
follows:

The data combines socio-economic data from the 1990 US Gglasu enforcement data from
the 1990 US LEMAS survey, and crime data from the 1995 FBI UB®ibutes were picked if
there was any plausible connection to crinfe € 122), plus the attribute to be predicted (Per
Capita Violent Crimes). The variables included in the datisvolve the community, such as
the percent of the population considered urban, and the anefdimily income, and involving
law enforcement, such as per capita number of police of,cansl percent of of cers assigned to
drug units. The per capita violent crimes variable was dated using population and the sum of
crime variables considered violent crimes in the UnitedeStamurder, rape, robbery, and assault.

All numeric data was normalized into the decimal range [GLOWD] using an unsupervised,
equal-interval binning method. Attributes retain theistdbution and skew (hence for example
the population attribute has a mean value of 0.06 because caonsnunities are small). E.g. An
attribute described as 'mean people per household' is Hgttlee normalized (0-1) version of
that value.

Since this data set was developed to identify potential €iimaicators, the natural partitioning
comes by grouping communities by the Per Capita Violent €sifPCVC) indicator variable. We
note that while the data set contains 122 features, 22 ottfemtures were only available for a
small minority of communities, so we removed them from the $a&is left us with a data set
consisting of 1993 communities measured by 100 featuresomie the full feature list, which

can be found in [22], however we will make explicit note of soselected features shortly.

A. A Distinct Difference

Although it is intuitive to think that communities with higrates of violent crime contain
inherent differences than those on the opposite end of thetrgpn, it is worth noting that none

of the measured features are directly related to crime. &leh¢s worthwhile to rst con rm our
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Fig. 10. Histogram of the per capita violent crime stati$ticthe measured communities.
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Fig. 11. Embedding the crime-based community groupingd WINE. The color of each sample corresponds to the maximuntayata
violent crime rate within the group.

initial intuition. Additionally, if these features are tyuindicative of violent crime, it is reasonable
to expect a smooth gradient of change in the features fronend®f the spectrum to the other. For
example, if a low median family income “indicates” the pdtahfor a high amount of crime, and
vice versa, then it should be expected that a mid-range mddraily income should correspond
to mid-range crime rates.

We set up this study by grouping communities with respech&rtPCVC values. Recall that
the range of PCVC i$0:00; 1:00], with a distribution illustrated in the histogram of Fig..18s
this distribution is highly non-uniform, we use non-unifobin ranges to group the communities,

intended to keep each bin with roughly the same number of EEmphis leaves us with a set of

points.
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Using kernel density estimation to approximate group POW¥es.embed each crime grouping
into a 2-dimensional space with FINE. The embedding restdts be seen in Fig. 11, where
each 2-dimensional sample point represents a collecti@momimunities whose maximum PCVC
value is identi ed by plot color. It is clear that our intwith was correct; there exists a smooth
and continuous gradient of increasing crime rate. Thisdeadthe natural conclusion that the
collection of measured features (or some subset thereef mhaleed contain predictive indicators

of violent crime rates.

B. Predicting Crime and Discriminating Features

Given the con rmation that the chosen features do indeedatomredictive value, we now test
the classi cation capabilities when using IGDR as a preepssing step. Speci cally, we look
to nd the optimal subspace for classifying a community asihg@ either low or high rates of
violent crime. This sets up as a 2 class problem, and we deterthe low-crime class as those
communities having a PCVC value of 0.03 or less, and the bighe class contains communities
with a PCVC value greater than 0.53. These thresholds wergechsuch that each class contained
roughly the same number of samples (226 and 239 respeqtively

Given that this is a classi cation problem, we use IMCA toatatine our optimabrthonormal
projection matrix. Note that we stress the orthonormaldpstraint here, as using Fisher's LDA,
which does not result in orthogonality, may seem approprat this task. If classi cation was
the only desirable task, then LDA would be suf cient. Howewee also intend to analyze the
projection matrix for variable selection, for which ortlality becomes a necessity. The LDA
projection is useful, however, as it gives us a means foraligation; we make the LDA matrix
orthogonal with the classical Gram-Schmidt orthogonéiliraalgorithm, and initialize our IMCA
gradient methods with the resultant matrix.

We choose to perform our analysis in an= 3-dimensional projection space for 2 reasons —
the ability to visualize the data, and the 3-dimensionaksepaptimized our objective, obtaining
the maximum separation between classesrid@ [2; 7]. After obtaining the3 100IMCA matrix
A, we project the data from each class into the same space,afap our classi cation task.
The projected data is shown in Fig. 12. It is interesting tiha&t low-crime communities show
much more variation than the high-crime communities, wheghibit form a tight cluster even

though the range of PCVC value was much larger.
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Fig. 12. The IMCA projection of communities based on the stasde ned by low and high PCVC values.
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Fig. 13. The rankings of the 100 variables in IMCA prjectiomtnix.

To test classi cation performance, we use a simple lineasgler and perform leave-one-out
cross-validation over all samples in the set. The resuk4dya 1.29% classi cation error — 1
low-crime and 5 high-crime communities were misclassi &br comparison sake, we note that
principal components analysis (PCA), an orthonormal uestiped method, results in a 3.44%
error rate, and LDA yielded a 1.51% error rate. Recall, th@ALdoes not have the orthogonal
constraint, yet IMCA still results in (slightly) better asi cation performance. In all cases, the
projection data was projected to 3 dimensions.

We now use the IMCA matriA to identify the most discriminating features. To do such, we
calculate thel ,-norm of the vector of weights for each of the 100 featuredufoos) of the
3 100 projection matrixA. After sorting in descending order, we plot these ranks o EB.
This shows that there are several features which offer sasegiminative value, and many more

that offer very little. In Table Il, we report the 5 most and éas$t discriminating features. We
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Top 5 Variables

Population For Community
Rental Housing - Median Rent
Number Of People Living In Areas Classi ed As Urban
Percentage Of Population Who Are Divorced
Median Household Income

Bottom 5 Variables

Per Capita Income For People With Hispanic Heritage
Percent Of Of cers Assigned To Drug Units

Per Capita Income For People With Asian Heritage
Land Area In Square Miles

Median Year Housing Units Built

TABLE Il
THE 5 MOST AND LEAST DISCRIMINATING FEATURES FOR PREDICTING HIGHDOR LOW RATES OF VIOLENT CRIME

preface these results by recalling that this data was fro®98 tensus and 1995 crime reporting.

Obviously much has changed since this data was reportedhéutsults do appear logical.

VIlI. CONCLUSION

In this article, we have presented IGDR; an informationrgetsic framework for dimensionality
reduction. As contrasted to standard Euclidean approaichesanifold learning, which aim to
reconstruct a Riemannian sub-manifold of Euclidean spauge,objective is to learn statistical
manifolds. We have shown that when the data produces rgatizaof probability density functions
lying on a statistical manifold, we can perform informatidriven dimensionality reduction in
both the density space and the sample space. These techmigue illustrated on the problem of
ow cytometry analysis, showing the ability to nd a subsgam which a pathologist can better
diagnose chronic lymphocytic leukemia patients. We wese able to compare patients one to
another in a single low-dimensional embedding space. We applied IGDR to a crime and
community data set, identifying community indicators oblent crime and accurately clustering
and classifying communities with high or low crime rates.eTpower of using information-
geometry for dimensionality reduction has just begun toxygaged and we hope this article will

lead to further extensions and applications.
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