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Abstract

We consider the problem of dimensionality reduction and manifold learning when the domain of interest

is a set of probability distributions instead of a set of Euclidean data vectors. In this problem, one seeks to

discover a low dimensional representation, called an embedding, that preserves certain properties such as distance

between measured distributions or separation between classes of distributions. Such representations are useful for

data visualization and clustering. While a standard Euclidean dimension reduction method like PCA, ISOMAP, or

Laplacian Eigenmaps can easily be applied to distributional data – e.g. by quantization and vectorization of the

distributions – this may not provide the best low-dimensional embedding. This is because the most natural measure

of dissimilarity between probability distributions is theinformation divergence and not the standard Euclidean

distance. If the information divergence is adopted then thespace of probability distributions becomes a non-

Euclidean space called an information geometry. This article presents methods that are speci�cally designed for

the low-dimensional embedding of information-geometric data, and we illustrate these methods for visualization in

�ow cytometry and demography analysis.

Index Terms

Information geometry, dimensionality reduction, statistical manifold, classi�cation

I. INTRODUCTION

High dimensional data visualization and interpretation have become increasingly important for data

mining, information retrieval, and information discrimination applications arising in areas such as search

engines, security, and biomedicine. The explosion in sensing and storage capabilities has generated a vast

amount of high dimensional data and led to the development ofmany algorithms for feature extraction

and visualization, known variously as dimensionality reduction, manifold learning, and factor analysis.
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Dimensionality reduction strategies fall in two categories: supervised task-driven approaches and unsu-

pervised geometry-driven approaches. Supervised task-driven approaches reduce data dimension according

to optimize a performance criterion that depends on both thereduced data and ground truth, e.g., class

labels. Examples include linear discriminant analysis (LDA) [1], supervised principal components [2], and

multi-instance dimensionality reduction [3]. Unsupervised geometry-driven approaches perform dimension

reduction without ground truth and try to preserve geometric properties such as distances or angles between

data points. Examples include principal components analysis (PCA) and multidimensional scaling (MDS)

[4], and ISOMAP [5]. Most of these approaches use Euclidean distances between sample points to drive

the dimensionality reduction algorithm.

Recently it has been recognized that these Euclidean algorithms can be generalized to non-Euclidean

spaces by replacing the Euclidean distance metric with a more general dissimilarity measure. In particular,

when the data samples are probability distributions, use ofan information divergence such as Kullback-

Leibler (KL) instead of Euclidean distance leads to a class of information geometric algorithms for

dimensionality reduction [6], [7]. In this article we motivate and explain the application of information-

geometric dimensionality reduction for two real-world applications.

Information-geometric dimensionality reduction (IGDR) operates on a statistical manifold of probability

distributions instead of the geometric manifold of Euclidean data points. When such distributional infor-

mation can be extracted from the data, IGDR results in signi�cant improvements in information retrieval,

visualization, and classi�cation performance [6]–[10]. This improvement can be understood from the point

of view of information-theoretic bounds: information divergence is generally more relevant to statistical

discrimination performance than Euclidean distance.

For example, for binary classi�cation the minimum probability of error converges to zero at an ex-

ponential rate with rate constant equal to the the Kullback-Leibler information divergence between the

distributions of the data over each class [11]. The KL divergence not a function of the Euclidean distances

between data points unless these distributions are spherical Gaussian. Therefore, as it preserves information

divergence, in many cases IGDR can produce more informativedimension reductions than classical

Euclidean approaches.

Implementation of information-geometric versions of PCA,ISOMAP and others is often not as straight-

forward as the Euclidean counterparts, which are frequently convex and solvable as generalized eigenvalue

problems. Nonetheless, as shown in this paper, the added complexity of implementation can be well
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Fig. 1. In clinical �ow cytometry, diagnoses and prognoses are made through the analysis of high-dimensional point clouds the measurement
space of selected bio-markers.

worth the effort. We illustrate the power of information geometric dimensionality reduction by presenting

generalizations of ISOMAP, PCA and LDA. These implementations are called Fisher Information Nonpara-

metric Embedding (FINE) [6], Information Preserving Components Analysis (IPCA) [9], and Information

Maximizing Components Analysis (IMCA) [12], respectively. Each of these algorithms solves a well-posed

optimization problem over the information-geometric embedding of each sample point's distribution.

Probability distributions and information divergence canarise as useful targets for dimensionality

reduction in several ways. In image retrieval applications, the most discriminating properties of an

image may be invariants such as the relative frequency of occurrence of different textures, colors, or

edge features. The histogram of these relative frequenciesis a probability distribution that is speci�c

to the particular image; up to scale, translation, rotationor other unimportant spatial transformations.

Dimensionality reduction on these probabilities can accelerate retrieval speed without negatively affecting

precision or recall rates. Furthermore, visualization of the database, e.g. as manifested by clusters of

similar images, can be useful for understanding database complexity or for comparing different databases.

In other applications, each object in the database is itselfstored as a cloud of high dimensional points

and the shape of this point cloud is what naturally differentiates the objects. For example, in the �ow

cytometry application, discussed in Section V of this paper, the objects are different patients, the data

points are vector attributes of a population of the patient's blood cells, and it is the shape of the point cloud

that is of interest to the pathologist. This is demonstratedin Fig. 1, where we compare the point clouds,

with respect to 3 bio-markers, of two patients with favorable and unfavorable prognoses. Another example,

discussed in Section VI, is spatio-demographic analysis ofcrime data where the analyst is interested in
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comparing patterns of crime in different cities based on distributions of community and law enforcement

characteristics.

All the algorithms presented here are available for download as MATLAB code on our reproducible

research website [13].

II. D ISTANCE ON STATISTICAL MANIFOLDS

Information geometry is a �eld that has emerged from the study of geometrical constructs on manifolds

of probability distributions. These investigations analyze probability distributions as geometrical structures

in a Riemannian space. Using tools and methods deriving fromdifferential geometry, information geometry

is applicable to information theory, probability theory, and statistics1.

As most dimensionality reduction techniques are designed to either preserve pairwise sample distances

(unsupervised) or maximize between-class distances (supervised), it is �rst necessary to understand the

principles of distance in information geometry. Similar topoints on a Riemannian manifold in Euclidean

space, PDFs which share a parametrization lie on astatistical manifold. A statistical manifold may be

viewed as a setM whose elements are probability distributions. The coordinate system of this manifold

is equivalent to the parametrization of the PDFs. For example, ad-variate Gaussian distribution is entirely

de�ned by its mean vector� and covariance matrix� , leading to ad+ d(d+ 1) =2-dimensional statistical

manifold which is of a higher dimension than the dimensiond of a sample realizationX � N (�; �)

from this distribution.

For a parametric family of probability distributions on a statistical manifold, it is possible to de�ne

a Riemannian metric using the Fisher information metric, which measures the amount of information

a random variable contains in reference to an unknown parameter � . This metric may then be used to

compute the Fisher information distanceDF (p1; p2) between two distributionsp(x; � 1); p(x; � 2) 2 M .

This distance is the length of the shortest path – the geodesic – onM connecting coordinates� 1 and� 2.

While the Fisher information distance cannot be exactly computed without a priori knowledge about

the parametrization� of the manifold, the distance between PDFsp1 and p2 may be approximated with

a variety of pseudo-metrics such as the Kullback-Leibler (KL) divergence,

KL (p1 k p2) =
Z

p1(x) log
p1(x)
p2(x)

dx: (1)

1For a more thorough introduction to information geometry, we suggest [14], [15]
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Fig. 2. Given a 1-dimensional submanifold (the curvy dark line) of interest lying on a 2-dimensional sphere manifold, the Fisher information
distance is the shortest path connecting the points A and B along the 1-D submanifold, rather than the length of a portion of the great circle
connecting the points on the sphere.

The KL-divergence is very important in information theory,and is commonly referred to as the relative

entropy of one PDF to another. As a pair of densities approacheach other, the Kullback-Leibler divergence

is a good approximation to the Fisher information distance between them2 [14]:

p
2KL (p1kp2) ! DF (p1; p2)

as p1 ! p2. This allows for a data-driven approximation of the Fisher information distance, through

the use of the empirically determined PDFs in the absence of information about the Fisher informa-

tion metric. While the KL-divergence is not a symmetric measure, we can add symmetry by de�ning,

DKL (p1; p2) = KL (p1 k p2) + KL (p2 k p1), which maintains similar convergence properties. We note

that there are several other metrics which approximate the Fisher information distance – such as the

Hellinger and cosine distances – although for brevity we utilize the KL-divergence throughout this paper.

For additional measures of probabilistic distance and details on their computation for empirical data, we

refer the reader to [16], [17].

As the two densitiesp1 andp2 in (1) become more dissimilar, the KL-divergence approximation of the

Fisher information distance becomes weak. Additionally, when PDFs are constrained to form a submanifold

of interest, the “straight shot” distance is no longer an accurate description of the manifold distance. This

is illustrated in Fig. 2 in which we represent a 1-dimensional submanifold which occupies a subspace

of the 2-dimensional hyper-sphere. The Fisher informationdistance is equal to the shortest path along

the submanifold (curvy line), and is not equal to the distance on the full manifold, i.e. the portion of a

2More precisely,2KL (p1kp2) = D 2
F (p1 ; p2)(1 + O(kp1 � p2k) wherekp1 � p2k denotes theL 2 norm of the difference between the

densities.
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Fig. 3. Convergence of the graph approximation of the Fisherinformation distance using the Kullback-Leibler divergence. As the manifold
is more densely sampled, the KL divergence approaches the Fisher information distance.

great circle on a hyper-sphere connecting the two points. Hence, there are situations in which standard

approximations of the information distance do not convergeto the true distance, and it is necessary to

approximate the geodesic along the manifold.

Using a connected graph, we may de�ne the path betweenp1 andp2 as a series of connected segments.

The geodesic distance may then be approximated as the sum of the lengths of those segments. Speci�cally,

given the collection ofN PDFsP = f p1; : : : ; pN g and using the KL-divergence as approximation of the

Fisher information distance, we can now de�ne an approximation functionG for all pairs of PDFs:

G(p1; p2; P) = min
M; P

M � 1X

i =1

DKL (p(i ) ; p(i +1) ); p(i ) ! p(i +1) 8 i: (2)

Intuitively, this estimate calculates the length of the shortest path between points in a connected graph

on the well sampled manifold, and as suchG(p1; p2; P) ! DF (p1; p2) asN ! 1 . Empirically, (2) may

be solved with Dijkstra's shortest path algorithm. This is similar to the manner in which ISOMAP [5]

approximates distances on Euclidean manifolds. Figure 3 illustrates this approximation by comparing the

KL graph approximation to the actual Fisher information distance for the univariate Gaussian case. As the

manifold is more densely sampled (uniformly sampling over the range of mean and variance parameters

for this simulation), the approximation converges to the true Fisher information distance.

III. D IMENSIONALITY REDUCTION IN THE DENSITY SPACE

Consider the collection of PDFsP = f p1; : : : ; pN g lying on some statistical manifoldM . By performing

dimensionality reduction in the space of probability densities, one wishes to reconstructM using only the

information available inP. Speci�cally, the aim is to �nd an embeddingA : p(x) ! y, wherey 2 Rm .
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Fig. 4. FINE: �rst, a probability density function (PDF)pi is estimated for each datasetX i . Then, an information-geometric metric is used
to learn the geometry of the manifold of PDFs from pairwise distance measurements. Finally, a Euclidean embedding from the manifold
M x to R d is obtained associating each original datasetX i with its embedded point in Euclidean spacex i .

This is a similar setting to traditional manifold learning algorithms which aim to reconstruct Riemannian

manifolds based on a �nite sampling, extended to the properties of statistical manifolds.

By performing dimensionality reduction on a family of PDFs,we are better able to both visualize

and classify the data. In order to obtain a lower dimensionalembedding, we calculate the pairwise KL-

divergences withinP. In problems of practical interest, however, the parameterization of the probability

densities is usually unknown. We instead are given a family of data setsX = f X 1; : : : ; X N g, in which

we may assume that each data setX i is a realization of some underlying probability distribution to which

we do not have knowledge of the parameters. As such, we rely onnonparametric techniques to estimate

both the probability density and the KL-divergence. For thepurposes of this paper, we implement kernel

density estimation methods, although other estimation methods are also applicable.

In previous work [6] we developed an algorithm for dimensionality reduction in the density space,

which we called Fisher Information Nonparametric Embedding (FINE). By assuming each data set is a

realization of an underlying PDF, and each of those distributions lie on a manifold with some natural

parametrization, then this embedding can be viewed as an embedding of the actual manifold into Euclidean

space. We illustrate the FINE algorithm in Fig. 4.

Through information geometry, FINE enables the joint embedding of multiple data setsX i into a

single low-dimensional Euclidean space. By viewing eachX i 2 X as a realization ofpi 2 P , we reduce

the numerous samples inX i to a single point. The dimensionality of the statistical manifold may be

signi�cantly less than that of the Euclidean realizations.MDS methods reduce the dimensionality ofpi
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from the Euclidean dimension to the dimension of the statistical manifold on which it lies.

A. Adding Application-speci�c Constraints

FINE was developed to be applied to the general case of dimensionality reduction in the space of

PDFs, making no assumptions on the data distributions or thegeometry of the underlying statistical man-

ifolds. However, there are several applications where known intrinsic properties which may be exploited

when performing information geometric dimensionality reduction. By incorporating these properties into

algorithm constraints, one may be able to obtain improved performance.

Lee et al. [18] have demonstrated the use of IGDR for image segmentation, using multinomial dis-

tributions as points which lie on ann-simplex (or projected onto an(n + 1) -dimensional sphere). By

framing their problem as such, they are able to exploit the properties of such a manifold – using the

cosine distance as an exact computation of the Fisher information distance, and using linear methods

(PCA) of dimensionality reduction. They have shown very promising results for the problem of image

segmentation.

If there existsa priori knowledge that the geometry of the underlying manifold is that of a (hyper)sphere,

adding such a constraint results in an improved embedding. In [8], we presented a special case of FINE

which we called Spherical Laplacian Information Maps (SLIM), which restricted the �nal embedding to

constrain all points to lie on the surface of a sphere. SLIM isuseful when the user wants to preserve the

spherical geometry of the ambient space, as arises for example when dimensionality reduction is used to

extract object pose trajectories from video. This is illustrated in Fig. 5, where we embed the rotation of

an object captured by a stationary camera with SLIM and PCA. Each of 36 images was featured as a

multinomial distribution over the pixel space prior to embedding. While PCA discerns the order of the

change in angle, it does not properly identify the shape of the trajectory (i.e. circular) as SLIM does.

IV. D IMENSIONALITY REDUCTION IN THE SAMPLE SPACE

For many learning methods, it is often desirable to reduce the dimensionality ofX , �nding a trans-

formationA : X ! Y whereY = [ y1; : : : ; yn ] and eachyi 2 Rm ; m < d . Typically, each set would be

reduced in an individual manner; if there is deemed a relationship between the sets, it has generally been

approached as a classi�cation problem in which each signalX i is considered a set of points belonging

to classi . An example of this situation would be supervised dimensionality reduction with Fisher's linear

discriminant analysis (LDA) [1].
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Fig. 5. The embedding of an object captured at various rotation points with SLIM and PCA. SLIM preserves the spherical nature of the
intrinsic manifold.

Viewing this problem from an information-geometric perspective presents a different vantage point;

rather than considering eachX i to be a collection of points in a speci�c class, let us generalize the

relationship between setsX i andX j . Speci�cally, consider the case for which eachX i is a realization

of some unknown generating functionpi , in which pi andpj may or may not be equivalent. This agrees

with the standard classi�cation problem, in which eachpi represents a class PDF, but it also allows

for different relationships between PDFs. Speci�cally, rather than having a number classes equal to the

number of data setsN , there may be signi�cantly fewer classesM � N , in which M is unknown and

no labels are available. In this generalized scenario, dimensionality reduction dimensionality reduction is

desirable for the purposes of classi�cation, feature extraction, and/or visualization.

Let us illustrate with a simple example. Every 10 years, a US census is performed generating a collection

of data about each of its residents such as height, weight, income, ethnicity, education level, etc.. Let us

now partition the data such that each county within the same state is represented by its own setX . Standard

methods of feature extraction will �nd the features which best describe each county on an individual level.

We are interested in determining the most important features when comparing all counties at the same

time. While median income may not be a distinguishing characteristic within a single county, and may

not be recognized as such when solely extracting features from that individual county, it would be quite

informative when comparing all counties across the state.
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The construct of comparison across data sets can be directlyabstracted to the biomedical �elds, where

it is necessary to compare patients who have been analyzed with the same set of features, and identify

which of those features best distinguishes the patient corpus. We have presented a method of information

geometric dimensionality reduction – which we refer to asInformation Preserving Component Analysis

(IPCA) – to solve this problem for �ow cytometry data [9]. IPCA aims to �nd the optimal transformation

of PDFsA : p(x) ! p(y). By preserving the KL-divergence the estimated PDFs generating the data sets,

IPCA ensures that the low-dimensional representation maintains the similarities between data sets which

are contained in the full-dimensional data, minimizing theloss of information.

With some abuse of notation, we will further refer toDKL (pi ; pj ) asDKL (X i ; X j ), recalling that the

KL-divergence is calculated with respect to PDFs, not realizations. We de�ne the IPCA projection matrix

A 2 Rm� d, in which A reduces the dimension ofX from d to m (m � d), such that

DKL (AX i ; AX j ) = DKL (X i ; X j ); 8 i; j: (3)

This can be formulated as an optimization problem:

A = arg min
A:AA T = I

J (A); (4)

whereI is the identity matrix andJ (A) is some cost function designed to implement (3). Note that we

include the optimization constraintAA T = I to ensure our projection is orthonormal, which keeps the data

from scaling or skewing as that would undesirably distort the data. LetD(X ) be a dissimilarity matrix

such thatD ij (X ) = DKL (X i ; X j ), and D(X ; A) is a similar matrix where the elements are perturbed

by A, i.e. D ij (X ; A) = DF (AX i ; AX j ). This formulation results in the following cost function:

J (A) =
X

i

X

j

Wij (D ij (X ) � D ij (X ; A))2 ; (5)

whereWij is some weighting factor.

The weightsWij can be selected based onD ij (X ) to de-emphasize the in�uence of certain pairs(i; j )

on the embedding. For example, nearest neighbor (NN) weights of Wij = 1 for somek-NN andWij = 0

will eliminate far-�ung interactions for which the KL-divergence is a poor approximation to the Fisher

metric. The use of heat kernel weights, similar to LaplacianEigenmaps [19], will have a more gradual

effect. These functions will ensure that more weight is given to preserve the pairwise distances of “close”

PDFs. While the choice of cost weighting function is dependent on the problem, the overall projection
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Fig. 6. IPCA/IMCA: �rst, a probability density function (PDF) pi is estimated for each datasetX i . Simultaneously, a probability density
function (PDF)qi is estimated for each datasetYi = AX i . Then, an information-geometric metric is used to learn thegeometry of the
manifold M x of PDFspi s and manifoldM y from PDFsqi s from pairwise distance measurements. Finally, an objective is calculated to
compare the geometry of the two manifoldsM x and M y . For IPCA, we consider the minimization of the sum of squareddifferences
between each pairwise distance onM x and its equivalent inM y . For IMCA, we consider the maximization of the sum of distances inM y .

method ensures that the similarity between data sets is maximally preserved in the desired low-dimensional

space, allowing for comparative learning between sets.

We illustrate the IPCA and IMCA (see Section IV-A) in Fig. 6. While we omit the details in this paper

(see [9], [17]), the cost function (5) may be minimized with various convex optimization techniques; we

utilize gradient descent with random initializations forA. There are computational issues with gradient

methods, namely local extrema. We �nd the global minimum by computing IPCA over several random

initializations and taking the resultantA which minimizes the cost function. In most applications we have

tested, this method has been very effective, and we have found most random initializations ofA converge

to the same minimum.

Recall that the information distance is entirely de�ned by those areas of input space in which PDFs

differ. As the IPCA preserves the information distance between probability distributions,A is going to be

highly weighted towards the variables which contribute most to that distance. Hence, the loading vectors

of A give a ranking of the discriminative value of each variable in the full-dimensional feature space.

This form of variable selection is useful in exploratory data analysis.
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A. Supervised Learning

As mentioned previously, when developing ICPA we generalized the relationship between PDFs such

that they may or may not represent unique classes in a classi�cation task. We presented IPCA in the

scenario for which sample classi�cation is not the desired task, but we now extend the methods to

supervised dimensionality reduction.

The Chernoff performance bound on classi�cation error is used to bound the probability of error

based on the probabilistic distance between classes. The Chernoff distance is a single-parameter class

of probabilistic distances, and as the distance increases,the probability of misclassi�cation decreases.

A special member of the class of Chernoff distances, know as the Bhattacharya distance between PDFs,

converges to the Fisher information distance, similarly tothe KL-divergence. It is natural, therefore, to �nd

a form of dimensionality reduction which will maximize the information distance between class PDFs,

as that will enable control of the error probability.

This information geometric approach �ts into the IPCA framework. Consider the following theorem:

Theorem 1:Let RVs X; X 0 2 Rd have PDFsf X and f X 0, respectively. Using them � d matrix A

satisfying AA T = I m , construct RVsY; Y0 2 Rm such thatY = AX and Y 0 = AX 0. The following

relation holds:

DKL (f X ; f X 0) � DKL (f Y ; f Y 0);

wheref Y and f Y 0 are the PDFs ofY; Y0, respectively.

The proof of this theorem may be found in [17] and states that the KL-divergence cannot be increased

through an orthonormal transform of the input space. This isintuitive, as an orthonormal transform is

simply a rotation, which cannot increase distance. As such,maximizing the information distance between

PDFs in a low-dimensional space is directly related to preserving said distance, albeit with a different

formulation.

The �rst difference is in the setup of the data. We now specifythat X = f X 1; : : : ; X N g whereX i

consists of all pointsx 2 Rd in classCi ; estimating the PDF ofX i aspi (x). Our objective function for

the supervised scenario undergoes a slight modi�cation to become:

A = arg max
A:AA T = I

X

i

X

j

Wij D ij (X ; A)2: (6)

We refer to this modi�ed algorithm asInformation Maximizing Component Analysis(IMCA) [12] []. By



13

Fig. 7. The point cloud method of analyzing �ow cytometry data is parallel to the analysis of the marginal densities of thedata distributions.

maximizing the information distance between class PDFs, wenot only ensure an optimal performance

bound on classi�cation error, but we also preserve the natural information geometry between classes. This

fact is critical when class PDFs are not linearly separable (e.g. such is the assumption of standard LDA).

Note that the optimization of the IMCA cost function may be done in a similar fashion to that of IPCA.

In fact, for the 2-class problem, IPCA and IMCA are identical. For our purposes we use gradientascent,

as the objective is now a maximization, and the calculation/code is quite similar. Note that we may still

use the IMCA projection matrix for variable selection, withthe knowledge that the variables with the

highest weights are those which contain the most discriminative value, which is critical for classi�cation

tasks.

It is worth explicitly pointing out that IMCA is similar to LDA. In fact, if the classes are Gaussian,

IMCA would result in an orthogonal version of LDA. Recall that LDA assumes Gaussian classes and

maximizes the between-class covariance while minimizing the within-class spread. This would maximize

the information distance between the classes. Hence, IMCA can be viewed as a generalized and orthogonal

version of LDA, which does not make assumptions on the class distribution.

V. FLOW CYTOMETRY

In clinical �ow cytometry, pathologists gather readings of�uorescent markers and light scatter off of

individual blood cells from a patient sample, leading to a characteristic multi-dimensional distribution

that, depending on the panel of markers selected, may be distinct for a speci�c disease entity. Clinical

pathologists generally interpret results in the form of two-dimensional scatter plots in which the axes each

represent one of the many cell characteristics analyzed; the multi-dimensional nature of �ow cytometry
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Marker Loading
Forward Light Scatter 0.1843
Side Light Scatter 0.1044
CD5 0.6270
CD38 0.8420
CD45 0.7228
CD19 0.5750

TABLE I
CLL ANALYSIS MARKERS THEIR CORRESPONDINGIPCA LOADING WEIGHTS.

Fig. 8. Contour plots (i.e. PDFs) for 3 of the 6 analysis dimensions for CLL prognosis. The data for these patients is then transformed
by IPCA, yielding a simple and easily discernable 2-dimensional analysis space. The patients chosen are the most similar favorable and
unfavorable prognosis CLL patients.

is routinely underutilized in practice. Given the manner inwhich analysis is performed on point clouds,

pathologists are actually performing a visual density analysis, as illustrated in Fig.7. Here we demonstrate

the similar marginal densities (with respect to 2 bio-markers) of patients with differing prognosis. This

enables the utilization of IGDR methods to provide a single analysis space for pathologists.

We present a study of chronic lymphocytic leukemia (CLL) patients, using IPCA to �nd a low-

dimensional space which preserves the differentiation between patients with good and poor prognoses

(i.e. favorable and unfavorable immunophenotypes). Usinga collection of 23 patients diagnosed with
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Fig. 9. Comparison of CLL patient embeddings, obtained withFINE, using (a) the full dimensional and (b) the IPCA projection matrix. The
patients with a poor immunophenotype (CD38hi) are generally well clustered against those with a favorable immunophenotype (CD38lo) in
both embedddings.

CLL3, we de�ne X = f X 1; : : : ; X 23g, where eachX i was analyzed with by the series of markers in

Table I. We use IPCA to determine the optimal information-preserving projection space, and illustrate this

projection in Fig. 8. This image shows the 3-dimensional measurement space of markers CD5, CD38,

and CD19; comparing two very similar patients with differing prognosis. It should be clear that IPCA

provides a projection space for which discerning prognosisis simpli�ed.

In Table I we also display the loading weights of each of the markers in the IPCA projection matrix.

This is done by taking the vector norm of each column in the2� 6 IPCA matrix. Note that CD38 has the

largest loading value; literature [20] has shown that patients whose leukemic cells are strong expressers

of CD38 have signi�cantly worse survival outcome. We also identify the possibility that CD45 and CD19

expression are also areas which may help prognostic ability, which is an area for further investigation.

Using FINE to embed the data (Fig. 9) for comparative visualization, we see that the different prognosis

groups are very similar, although decent clusters are formed when labels are applied. These clusters are

not well separated, however, which further illustrates thedif�culties in forming an appropriate prognosis.

There are also issues of sample size, as a larger database of patients may lead to a more clear separation

of clusters. Nonetheless, IPCA and FINE were able to appropriately identify the important markers for

assigning prognosis, and group patients accordingly with respect to immunophenotype. For additional

details on this and other studies of FINE and IPCA with �ow cytometry, we refer the reader to [9], [21]

3Courtesy of the Department of Pathology at the University ofMichigan
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VI. CRIME IN THE 90S

We next illustrate IDGR to the analysis of crime indicators from 1990 U.S. census data. This data

will be used to illustrate how information geometry can be used to discover which community and law

enforcement features may be indicative of the level of crimeseen in said community. We obtained the

data from the UCI Machine Learning Repository [22], which isdescribed in an abbreviated fashion as

follows:

The data combines socio-economic data from the 1990 US Census, law enforcement data from

the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR.Attributes were picked if

there was any plausible connection to crime (N = 122), plus the attribute to be predicted (Per

Capita Violent Crimes). The variables included in the data set involve the community, such as

the percent of the population considered urban, and the median family income, and involving

law enforcement, such as per capita number of police of�cers, and percent of of�cers assigned to

drug units. The per capita violent crimes variable was calculated using population and the sum of

crime variables considered violent crimes in the United States: murder, rape, robbery, and assault.

All numeric data was normalized into the decimal range [0.00-1.00] using an unsupervised,

equal-interval binning method. Attributes retain their distribution and skew (hence for example

the population attribute has a mean value of 0.06 because most communities are small). E.g. An

attribute described as 'mean people per household' is actually the normalized (0-1) version of

that value.

Since this data set was developed to identify potential crime indicators, the natural partitioning

comes by grouping communities by the Per Capita Violent Crimes (PCVC) indicator variable. We

note that while the data set contains 122 features, 22 of those features were only available for a

small minority of communities, so we removed them from the set. This left us with a data set

consisting of 1993 communities measured by 100 features. Weomit the full feature list, which

can be found in [22], however we will make explicit note of some selected features shortly.

A. A Distinct Difference

Although it is intuitive to think that communities with highrates of violent crime contain

inherent differences than those on the opposite end of the spectrum, it is worth noting that none

of the measured features are directly related to crime. Hence, it is worthwhile to �rst con�rm our
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Fig. 10. Histogram of the per capita violent crime statisticfor the measured communities.
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Fig. 11. Embedding the crime-based community groupings with FINE. The color of each sample corresponds to the maximum per capita
violent crime rate within the group.

initial intuition. Additionally, if these features are truly indicative of violent crime, it is reasonable

to expect a smooth gradient of change in the features from oneend of the spectrum to the other. For

example, if a low median family income “indicates” the potential for a high amount of crime, and

vice versa, then it should be expected that a mid-range median family income should correspond

to mid-range crime rates.

We set up this study by grouping communities with respect to their PCVC values. Recall that

the range of PCVC is[0:00; 1:00], with a distribution illustrated in the histogram of Fig. 10. As

this distribution is highly non-uniform, we use non-uniform bin ranges to group the communities,

intended to keep each bin with roughly the same number of samples. This leaves us with a set of

29 crime-based groupingsX = f X 1; : : : ; X 29g, each consisting of between 50 and 122 sample

points.
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Using kernel density estimation to approximate group PDFs,we embed each crime grouping

into a 2-dimensional space with FINE. The embedding resultscan be seen in Fig. 11, where

each 2-dimensional sample point represents a collection ofcommunities whose maximum PCVC

value is identi�ed by plot color. It is clear that our intuition was correct; there exists a smooth

and continuous gradient of increasing crime rate. This leads to the natural conclusion that the

collection of measured features (or some subset thereof) does indeed contain predictive indicators

of violent crime rates.

B. Predicting Crime and Discriminating Features

Given the con�rmation that the chosen features do indeed contain predictive value, we now test

the classi�cation capabilities when using IGDR as a pre-processing step. Speci�cally, we look

to �nd the optimal subspace for classifying a community as having either low or high rates of

violent crime. This sets up as a 2 class problem, and we determine the low-crime class as those

communities having a PCVC value of 0.03 or less, and the high-crime class contains communities

with a PCVC value greater than 0.53. These thresholds were chosen such that each class contained

roughly the same number of samples (226 and 239 respectively).

Given that this is a classi�cation problem, we use IMCA to determine our optimalorthonormal

projection matrix. Note that we stress the orthonormality constraint here, as using Fisher's LDA,

which does not result in orthogonality, may seem appropriate for this task. If classi�cation was

the only desirable task, then LDA would be suf�cient. However, we also intend to analyze the

projection matrix for variable selection, for which orthogonality becomes a necessity. The LDA

projection is useful, however, as it gives us a means for initialization; we make the LDA matrix

orthogonal with the classical Gram-Schmidt orthogonalization algorithm, and initialize our IMCA

gradient methods with the resultant matrix.

We choose to perform our analysis in anm = 3-dimensional projection space for 2 reasons –

the ability to visualize the data, and the 3-dimensional space optimized our objective, obtaining

the maximum separation between classes form 2 [2; 7]. After obtaining the3� 100IMCA matrix

A, we project the data from each class into the same space, and perform our classi�cation task.

The projected data is shown in Fig. 12. It is interesting thatthe low-crime communities show

much more variation than the high-crime communities, whichexhibit form a tight cluster even

though the range of PCVC value was much larger.
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Fig. 13. The rankings of the 100 variables in IMCA prjection matrix.

To test classi�cation performance, we use a simple linear classi�er and perform leave-one-out

cross-validation over all samples in the set. The results yield a 1.29% classi�cation error – 1

low-crime and 5 high-crime communities were misclassi�ed.For comparison sake, we note that

principal components analysis (PCA), an orthonormal unsupervised method, results in a 3.44%

error rate, and LDA yielded a 1.51% error rate. Recall, that LDA does not have the orthogonal

constraint, yet IMCA still results in (slightly) better classi�cation performance. In all cases, the

projection data was projected to 3 dimensions.

We now use the IMCA matrixA to identify the most discriminating features. To do such, we

calculate theL2-norm of the vector of weights for each of the 100 features (columns) of the

3 � 100 projection matrixA. After sorting in descending order, we plot these ranks in Fig. 13.

This shows that there are several features which offer some discriminative value, and many more

that offer very little. In Table II, we report the 5 most and 5 least discriminating features. We
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Top 5 Variables
Population For Community
Rental Housing - Median Rent
Number Of People Living In Areas Classi�ed As Urban
Percentage Of Population Who Are Divorced
Median Household Income
Bottom 5 Variables
Per Capita Income For People With Hispanic Heritage
Percent Of Of�cers Assigned To Drug Units
Per Capita Income For People With Asian Heritage
Land Area In Square Miles
Median Year Housing Units Built

TABLE II
THE 5 MOST AND LEAST DISCRIMINATING FEATURES FOR PREDICTING HIGHOR LOW RATES OF VIOLENT CRIME.

preface these results by recalling that this data was from a 1990 census and 1995 crime reporting.

Obviously much has changed since this data was reported, butthe results do appear logical.

VII. CONCLUSION

In this article, we have presented IGDR; an information-geometric framework for dimensionality

reduction. As contrasted to standard Euclidean approachesto manifold learning, which aim to

reconstruct a Riemannian sub-manifold of Euclidean space,our objective is to learn statistical

manifolds. We have shown that when the data produces realizations of probability density functions

lying on a statistical manifold, we can perform information-driven dimensionality reduction in

both the density space and the sample space. These techniques were illustrated on the problem of

�ow cytometry analysis, showing the ability to �nd a subspace in which a pathologist can better

diagnose chronic lymphocytic leukemia patients. We were also able to compare patients one to

another in a single low-dimensional embedding space. We also applied IGDR to a crime and

community data set, identifying community indicators of violent crime and accurately clustering

and classifying communities with high or low crime rates. The power of using information-

geometry for dimensionality reduction has just begun to be explored and we hope this article will

lead to further extensions and applications.
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